ORACLE

ORACLE

Working with Data — In-place processing &
Persisting Data

Lesson 5

. Objectives

After completing this lesson, you should be able to:

« Understand concurrency challenges

Describe the EntryProcessor interface

Understand how to send the processing to the data
Describe the methods of persisting data in Coherence
Discuss Coherence configuration files

* Understand next steps

ORACLE

. Concurrency

 In any environment, concurrent access to data must
be considered

 Traditional processing uses locking mechanisms to
control data concurrency

« Coherence provides the ConcurrentMap interface (not
covered here) which allows locking/unlocking of
objects.

» Use lock, unlock methods and then get and put methods.

* In a world where you want to minimise the number of network
trips — this could take approx 14

e There is a way to do this in 4 network hops — read
on...

ORACLE

. Entry Processors

e com.tangosol.util.InvocableMap.EntryProcessors are
agents that perform processing against Entries
directly where they are being managed

* Requests are sent directly to owners to do work

* Equivalent to “agents” executing services in parallel
on the data in the cluster

e Processing...

* may mutate cache entries, including creating, updating or
removing, or

* just perform calculations, or anything else!

ORACLE

. InvocableMap Interface

Object invoke(Object oKey,
InvocableMap.EntryProcessor processor)

* Invoke the passed EntryProcessor against the Entry specified by the
passed key, returning the result of the invocation
Map invokeAll(Collection keys,
InvocableMap.EntryProcessor processor)

* Invoke the passed EntryProcessor against the entries specified by
the passed keys, returning the result of the invocation for each Entry
Map invokeAll(Filter filter,
InvocableMap.EntryProcessor processor)
* Invoke the passed EntryProcessor against the set of entries that are

selected by the given Filter, returning the result of the invocation for
each Entry

Next we need to define what Class we want to invoke...

ORACLE

. InvocableMap.EntryProcessor ...

 An entry process implements the following (and
must be serializable)

e Object process(lnvocableMap.Entry entry)
* Process a Map.Entry object (yours to implement!)

 Map processAll(Set setEntries)

* Process a Set of InvocableMap.Entry objects (implementation
typically provided by a super-class)

 Now we need to see what actions we can perform
with an Entry

ORACLE

. InvocableMap.Entry Interface

Object getKey()
* Return the key corresponding to this entry

Object getValue()
* Return the value corresponding to this entry
boolean isPresent()
* Determine if this Entry exists in the Map
void remove(boolean isSynthetic)
* Remove this Entry from the Map if it is present in the Map
Object setValue(Object value)
« Store the value corresponding to this entry
void setValue(Object value, boolean isSynthetic)
« Store the value corresponding to this entry

ORACLE

. Out of the Box EntryProcessors

* There are a number of provided EntryProcessors

» AbstractProcessor, CompositeProcessor,
ConditionalProcessor, ConditionalPut,
ConditionalPutAll, ConditionalRemove,
ExtractorProcessor, Numberincrementor,
NumberMultiplier, PreloadRequest,

PropertyProcessor, UpdaterProcessor, VersionedPut,
VersionedPutAll

 You will mostly write your own...

ORACLE

. Example

« Usually you create your own custom implementations
« Simply sub-class com.tangosol.util.processors.AbstractProcessor

class StockSplitProcessor extends AbstractProcessor {

Object process(Entry entry) {

Position position = (Position)entry.getValue();
position.setAmount(position.getAmount() * factor));
entry.setValue(position);

return null;

}
}

 Now to run this on all entries

// now run the entry processor
stocks. invokeAll (AlwaysFilter. INSTANCE,

new StockSplitProcessor ();

ORACLE

. Gotchas

« Exceptions thrown within EntryProcessors will be
wrapped and re-thrown to application calling thread

e Failure to “set” or “remove” a value will mean no
Cache Entry mutation will occur!

o If fatal failure occurs during execution (eg: JVM
death)...

* EntryProcessor execution will be rescheduled & executed
again (guaranteed to execute)

* You MUST ensure EntryProcessors are
IDEMPOTENT

* ie: If executed again, the EntryProcessor must produce the
same value (and external side-effects)

ORACLE

. Data Source Integration

« Coherence supports transparent read-write caching of
any datasource, including databases, web services,
packaged applications and filesystems, databases are
the most common use case

 Effective caches must support both intensive read-
only and read-write operations, and in the case of
read-write operations, the cache and database must
be kept fully synchronized.

* To accomplish this, Coherence supports Read-
Through, Write-Through, Refresh-Ahead and Write-
Behind caching.

ORACLE

. Persisting Data — The mechanics

« Backing Maps are the method by which a
NamedCache persists data

 Memory is the default implementation that we have
been using

e This Iis achieved by using a different Backing Map to
persist to databases, files ,etc

ORACLE

. Implementations

Read Through
 |f data is not present in the cache, then the back end data source
implementation is used to read the data and place it in the cache
Write Through
* When writing data, the “put” method will not return until the data is
written the the back end data source. E.g. syncrhonous
Refresh Ahead
« Data that is about to expire will be refreshed before its expiry time,
So as to not delay any reads
Write Behind

« Data is written asynchronously to the back end data source with a
configurable delay. E.g. ensure that the data is written by a max of n
seconds

ORACLE

. Read Through

i))
ST i N ~) ()
3 . n _
a‘—gEt{‘ c" i l0ad ()} cacheLoader
8] \
a-l—get{} ﬂ:
 Logical
;B Local Partitioned Cache Local / .
_Application Logical | LocalStorage=false _ localStorage=true i Logical; _ Application
A
e N R
' Mear Cache L Mear Cache P,
JVM 2 I
— ,f—«:ﬁ
i | _
{ load() Cacheloader
8- Loaca
T { Local / Partitioned Cache Partitioned Cache Local |)
_Application) Llogical /| LocalStorage=false) _ localStorage=true i Logical; _ Application
N Mear Cache) - Mear Cache P,
. bt o e JUM 4)

ORACLE

. Write Through

~ R
rf-r/-_\‘ﬁ l"‘-r" iy ||" S N -":\ I'f‘—‘\\
3 ' PEE W -
ﬂq—-g et() ; a" i CacheStore
a | \
| a Logical
i ! Local / Partitioned Cache Partitiongd Cache Local / _
Application .||:|:||g||;,a|‘_ _ LocalStorage=false _ localStorpge=true)i Logical ; \ Application
e Mear Cache - \ MHear Cache P,
\. JVM 1 % JuM 2 !
s
rf—“‘v P T 2 (1 s Ny T))
| store() CacheStore
Q~set0 ST |
a_F‘“t{}— 4 i ﬂ a
{ Logical Backup J.I!.Dgsu_'a_r'.f
c Partitioned Cache Partitioned Cache Local f :
_Application | localStorage=false | _ localStorage=true)i Logical ; _Application
3 Mear Cache) L Mear Cache P,
\. bt o JUM 4 !

ORACLE

Write Behind

-5 ™ - B
T e) 4 ()
aa—get{} Ia‘ L 10ad (}—cachestore

K |
a ! Logical
L ns Lol f .
\ Application | | Logical Application
Partitioned Cache
_ LocalStorage=false | _ localStjrage=true
Mear Cache i L Mear Cache)
4 JVm 2 .
el i T o \._\'
I . T 1 (A T ar————= G 4 y
B0t @ S soreO{Cuoeso)|
-._!_uglu_'al__;i
Applicati Bonil Applicati
pRication ' Logical J pplication
— Backup St —
Partitioned Cache Partitioned Cache
\ LocalStorage=Falsa - h LocalStorage=true §
\ Mear Cache) \ Mear Cache y
_ JVM 3 A Jv 2 g

ORACLE

. Data Source Integration

There are a number of out of the box integrations:
« Hibernate

* Toplink Essentials

« Java Persistance Architecture (JPA)

e Simple JDBC

 Filesystem

* YOu can create your own implementations...

ORACLE

. Configuration Files

* Up to now we have not specified any configuration to use our
caches. How does Coherence know what sort of cache toplogy
to use?

» Default configuration has been loaded from
coherence.jar!/tangosol-coherence.xml

* You should be able to see this from the messages on the startup of
your cache servers

* You can specify the config file using the following Java
parameter

« -Dtangosol.coherence.cacheconfig=file.xml

* You can also point to a http location — very useful with large number
of members in a cluster

» Ships with out-of-the-box wildcard-based Cache Names
* Wildcard Cache Names map to out-of-the-box Topologies!

ORACLE

. Configuration Files (cont...)

 There are two main sections:
« Cache scheme mapping
* Definition of Cache scheme

e Cache Scheme Matching
« Matches names of caching with schemes

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-*</cache-name>
<scheme-name>example-distributed</scheme-name>
<init-params>
<init-param>
<param-name>back-size-limit</param-name>
<param-value>10000</param-value>
</init-param>
</init-params>
</cache-mapping>

ORACLE

. Configuration Files (cont...)

 Scheme Definition
* Defines the actual scheme

<caching-schemes>
<I-- Distributed caching scheme. -->
<distributed-scheme>
<scheme-name>example-distributed</scheme-name>
<service-name>DistributedCache</service-name>

<backing-map-scheme>
<local-scheme>
<scheme-ref>example-backing-map</scheme-ref>
</local-scheme>
</backing-map-scheme>

<autostart>true</autostart>
</distributed-scheme>

ORACLE

. Next Steps

« Hopefully this has given you a taste of what is
possible within Oracle Coherence

« Potential Next steps:

* Visit wiki.tangosol.com for more in-depth technical information
on Coherence including many examples

* Investigate .NET integration

« HTTP session state management
« JPA Lab in your own time

e Continuous Queries

* Much more...

ORACLE

. Summary

In this lesson, you should have learned how to:

« Understand concurrency challenges

* Describe the EntryProcessor interface

* Understand how to send the processing to the data

* Describe the methods of persisting data in Coherence
 Discuss Coherence configuration files

* Understand next steps

ORACLE

ORACLE

	Slide Number 1
	Working with Data – In-place processing & Persisting Data
	Objectives
	Concurrency
	Entry Processors
	InvocableMap Interface
	InvocableMap.EntryProcessor …
	InvocableMap.Entry Interface
	Out of the Box EntryProcessors
	Example
	Gotchas
	Data Source Integration
	Persisting Data – The mechanics
	Implementations
	Read Through
	Write Through
	Write Behind
	Data Source Integration
	Configuration Files
	Configuration Files (cont…)
	Configuration Files (cont…)
	Next Steps
	Summary
	Slide Number 24

