
<Insert Picture Here>

<Insert Picture Here>

Working with Data – In-place processing &
Persisting Data
Lesson 5

Objectives

After completing this lesson, you should be able to:
• Understand concurrency challenges
• Describe the EntryProcessor interface
• Understand how to send the processing to the data
• Describe the methods of persisting data in Coherence
• Discuss Coherence configuration files
• Understand next steps

Concurrency

• In any environment, concurrent access to data must
be considered

• Traditional processing uses locking mechanisms to
control data concurrency

• Coherence provides the ConcurrentMap interface (not
covered here) which allows locking/unlocking of
objects.
• Use lock, unlock methods and then get and put methods.
• In a world where you want to minimise the number of network

trips – this could take approx 14
• There is a way to do this in 4 network hops – read

on…

Entry Processors

• com.tangosol.util.InvocableMap.EntryProcessors are
agents that perform processing against Entries
directly where they are being managed
• Requests are sent directly to owners to do work

• Equivalent to “agents” executing services in parallel
on the data in the cluster

• Processing...
• may mutate cache entries, including creating, updating or

removing, or
• just perform calculations, or anything else!

InvocableMap Interface

• Object invoke(Object oKey,
InvocableMap.EntryProcessor processor)

• Invoke the passed EntryProcessor against the Entry specified by the
passed key, returning the result of the invocation

• Map invokeAll(Collection keys,
InvocableMap.EntryProcessor processor)

• Invoke the passed EntryProcessor against the entries specified by
the passed keys, returning the result of the invocation for each Entry

• Map invokeAll(Filter filter,
InvocableMap.EntryProcessor processor)

• Invoke the passed EntryProcessor against the set of entries that are
selected by the given Filter, returning the result of the invocation for
each Entry

• Next we need to define what Class we want to invoke…

InvocableMap.EntryProcessor …

• An entry process implements the following (and
must be serializable)

• Object process(InvocableMap.Entry entry)
• Process a Map.Entry object (yours to implement!)

• Map processAll(Set setEntries)
• Process a Set of InvocableMap.Entry objects (implementation

typically provided by a super-class)

• Now we need to see what actions we can perform
with an Entry

InvocableMap.Entry Interface

• Object getKey()
• Return the key corresponding to this entry

• Object getValue()
• Return the value corresponding to this entry

• boolean isPresent()
• Determine if this Entry exists in the Map

• void remove(boolean isSynthetic)
• Remove this Entry from the Map if it is present in the Map

• Object setValue(Object value)
• Store the value corresponding to this entry

• void setValue(Object value, boolean isSynthetic)
• Store the value corresponding to this entry

Out of the Box EntryProcessors

• There are a number of provided EntryProcessors
• AbstractProcessor, CompositeProcessor,

ConditionalProcessor, ConditionalPut,
ConditionalPutAll, ConditionalRemove,
ExtractorProcessor, NumberIncrementor,
NumberMultiplier, PreloadRequest,
PropertyProcessor, UpdaterProcessor, VersionedPut,
VersionedPutAll

• You will mostly write your own…

Example

• Usually you create your own custom implementations
• Simply sub-class com.tangosol.util.processors.AbstractProcessor

class StockSplitProcessor extends AbstractProcessor {
...
Object process(Entry entry) {
Position position = (Position)entry.getValue();
position.setAmount(position.getAmount() * factor));
entry.setValue(position);
return null;
}

}

• Now to run this on all entries

// now run the entry processor
stocks.invokeAll(AlwaysFilter.INSTANCE,

new StockSplitProcessor ());

Gotchas

• Exceptions thrown within EntryProcessors will be
wrapped and re-thrown to application calling thread

• Failure to “set” or “remove” a value will mean no
Cache Entry mutation will occur!

• If fatal failure occurs during execution (eg: JVM
death)...
• EntryProcessor execution will be rescheduled & executed

again (guaranteed to execute)
• You MUST ensure EntryProcessors are

IDEMPOTENT
• ie: If executed again, the EntryProcessor must produce the

same value (and external side-effects)

Data Source Integration

• Coherence supports transparent read-write caching of
any datasource, including databases, web services,
packaged applications and filesystems, databases are
the most common use case

• Effective caches must support both intensive read-
only and read-write operations, and in the case of
read-write operations, the cache and database must
be kept fully synchronized.

• To accomplish this, Coherence supports Read-
Through, Write-Through, Refresh-Ahead and Write-
Behind caching.

Persisting Data – The mechanics

• Backing Maps are the method by which a
NamedCache persists data

• Memory is the default implementation that we have
been using

• This is achieved by using a different Backing Map to
persist to databases, files ,etc

Implementations

• Read Through
• If data is not present in the cache, then the back end data source

implementation is used to read the data and place it in the cache
• Write Through

• When writing data, the “put” method will not return until the data is
written the the back end data source. E.g. syncrhonous

• Refresh Ahead
• Data that is about to expire will be refreshed before its expiry time,

so as to not delay any reads
• Write Behind

• Data is written asynchronously to the back end data source with a
configurable delay. E.g. ensure that the data is written by a max of n
seconds

Read Through

Write Through

Write Behind

Data Source Integration

There are a number of out of the box integrations:
• Hibernate
• Toplink Essentials
• Java Persistance Architecture (JPA)
• Simple JDBC
• Filesystem

• You can create your own implementations…

Configuration Files

• Up to now we have not specified any configuration to use our
caches. How does Coherence know what sort of cache toplogy
to use?

• Default configuration has been loaded from
coherence.jar!/tangosol-coherence.xml
• You should be able to see this from the messages on the startup of

your cache servers
• You can specify the config file using the following Java

parameter
• -Dtangosol.coherence.cacheconfig=file.xml
• You can also point to a http location – very useful with large number

of members in a cluster
• Ships with out-of-the-box wildcard-based Cache Names
• Wildcard Cache Names map to out-of-the-box Topologies!

Configuration Files (cont…)

• There are two main sections:
• Cache scheme mapping
• Definition of Cache scheme

• Cache Scheme Matching
• Matches names of caching with schemes

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-*</cache-name>
<scheme-name>example-distributed</scheme-name>
<init-params>
<init-param>
<param-name>back-size-limit</param-name>
<param-value>10000</param-value>

</init-param>
</init-params>

</cache-mapping>

Configuration Files (cont…)

• Scheme Definition
• Defines the actual scheme

<caching-schemes>
<!-- Distributed caching scheme. -->
<distributed-scheme>
<scheme-name>example-distributed</scheme-name>
<service-name>DistributedCache</service-name>

<backing-map-scheme>
<local-scheme>
<scheme-ref>example-backing-map</scheme-ref>

</local-scheme>
</backing-map-scheme>

<autostart>true</autostart>
</distributed-scheme>

Next Steps

• Hopefully this has given you a taste of what is
possible within Oracle Coherence

• Potential Next steps:
• Visit wiki.tangosol.com for more in-depth technical information

on Coherence including many examples
• Investigate .NET integration
• HTTP session state management
• JPA Lab in your own time
• Continuous Queries
• Much more…

Summary

In this lesson, you should have learned how to:
• Understand concurrency challenges
• Describe the EntryProcessor interface
• Understand how to send the processing to the data
• Describe the methods of persisting data in Coherence
• Discuss Coherence configuration files
• Understand next steps

	Slide Number 1
	Working with Data – In-place processing & Persisting Data
	Objectives
	Concurrency
	Entry Processors
	InvocableMap Interface
	InvocableMap.EntryProcessor …
	InvocableMap.Entry Interface
	Out of the Box EntryProcessors
	Example
	Gotchas
	Data Source Integration
	Persisting Data – The mechanics
	Implementations
	Read Through
	Write Through
	Write Behind
	Data Source Integration
	Configuration Files
	Configuration Files (cont…)
	Configuration Files (cont…)
	Next Steps
	Summary
	Slide Number 24

